# Meta-Abduction Inference to the Best Prediction

Christian J. Feldbacher-Escamilla

Spring 2019

### **Project Information**

#### Publication(s):

• Feldbacher-Escamilla, Christian J. (under revision). *Epistemic Engineering. Uncovering the Logic of Deceivability and Meta-Induction*. book manuscript.

#### Talk(s):

 Feldbacher-Escamilla, Christian J. (2019-06-05/2019-06-07). Meta-Abduction. Inference to the Best Prediction. Conference. Presentation (contributed). IACAP 2019. Universidad Nacional Autónoma de México: The International Association for Computing and Philosophy.

#### Project(s):

 DFG funded research unit Inductive Metaphysics (FOR 2495); subproject: Creative Abductive Inference and its Role for Inductive Metaphysics in Comparison to Other Metaphysical Methods.

#### Introduction

There are three main inferences used in science:

- deduction
- induction
- abduction, we consider only: inference to the best explanation IBE

Deduction is justified due to its guaranteed truth preservation.

Induction can be vindicated.

How about IBE? We will differentiate two forms:

- Inference to the best explanation
- Inference to the best prediction

We argue: Both forms can be epistemically justified.

To show the latter is harder and presupposes the vindication of induction.

#### Contents



Induction and its Meta-Inductive Justification





Inference to the Best Prediction and its Justification

### Induction and its Meta-Inductive Justification

#### Prediction Games

Let's consider a series of events  $e_1, e_2, \ldots$  with outcomes in [0, 1].

Now, consider prediction methods for the event outcomes:  $pred_1, \ldots, pred_n$  of the form  $pred_i(e_t) \in [0, 1]$ 

A simple prediction method for binary events would be, e.g., a binarized likelihood method:  $pred(e_t) = 1$  if  $\frac{E_1 + \dots + E_{t-1}}{t-1} \ge 0.5$  otherwise  $pred(e_t) = 0$ 

|                   | $ e_1 $ | e <sub>2</sub> | <i>e</i> <sub>3</sub> | $e_4$ | <i>e</i> 5 | <i>e</i> <sub>6</sub> | e <sub>7</sub> |  |
|-------------------|---------|----------------|-----------------------|-------|------------|-----------------------|----------------|--|
| Ei                | 0       | 0              | 1                     | 1     | 1          | 1                     | 0              |  |
| pred <sub>1</sub> | 1       | 0              | 0                     | 0     | 1          | 1                     | 1              |  |

Now, assume that past predictions and event outcomes (E's) are available. Then we can evaluate prediction methods according to their success. Problem: There is no guarantee for success of induction.

# Reichenbach's Approach: Induction as Best Alternative



I "If we cannot realize the sufficient conditions of success, we shall at least realize the necessary conditions." (p.348)

- 2 "Let us introduce the term "predictable" for a world which is sufficiently ordered to enable us to construct a series with a limit." (p.350)
- 3 "The principle of induction [i.e. the straight rule which transfers the observed frequency to the limit] has the quality of leading to the limit, if [the world is predictable]." (p.353)
- ④ "Other methods [might also] indicate to us the value of the limit." (p.353)
- (5) "The inductive principle will do the same;"
- **(6)** [Hence, asymptotical convergence with the inductive principle is a necessary condition.]

(Reichenbach 1938)

Problem: Assumption that the frequency of  $E_i$  is limited.

(p.355)

## An Expansion: Meta-Induction

- Nothing in Reichenbach's argument excludes that God-guided clairvoyants may be predictively much more successful than the objectinductivist.
- Period was well aware of this problem, and he remarked that if successful future-teller existed, then the inductivist would recognize this by applying induction to the success of prediction methods.
- But he did neither show nor even attempt to show that by this metainductivistic observation the inductivist could have equally high predictive success as the future-teller.
- 4 Skilful application of results from machine learning serve this aim.

(cf. Schurz 2008, p.281)

# The Meta-Inductive Recipe

How to cook up  $pred_{MI}$ :

• We measure the past success of a method by inverting the loss.

| Ei                | 0 | 0 | 0 |               | success |
|-------------------|---|---|---|---------------|---------|
| $pred_1$          | 1 | 0 | 1 | $\Rightarrow$ | 0.33    |
| pred <sub>2</sub> | 0 | 0 | 1 |               | 0.66    |

• We measure the attractivity of a method for the *MI*-method (*pred<sub>MI</sub>*) by cutting off worse than *MI*-performing methods.

| pred <sub>MI</sub> | 0.66 |               | attractivity |
|--------------------|------|---------------|--------------|
| $pred_1$           | 0.33 | $\Rightarrow$ | 0.0          |
| pred <sub>2</sub>  | 0.66 |               | 0.66         |

• We calculate weights out of the attractivities.

|                   | attractivity |               | weight |
|-------------------|--------------|---------------|--------|
| $pred_1$          | 0.0          | $\Rightarrow$ | 0.0    |
| pred <sub>2</sub> | 0.66         |               | 1.0    |

• We define *pred<sub>MI</sub>* by attractivity-based weighting of predictions *pred<sub>i</sub>*.

# Formal Details

$$success(pred_i, t) = rac{\sum\limits_{k=1}^{t} 1 - loss(pred_i(e_k), E_k)}{t}$$

$$attractivity(pred_i, t + 1) = \begin{cases} success(pred_i, t), & \text{if } success(pred_i, t) \geq \\ & success(pred_{MI}, t) \\ 0, & \text{otherwise} \end{cases}$$

$$weight(pred_i, t+1) = \frac{attractivity(pred_i, t+1)}{\sum\limits_{k=1}^{n} attractivity(pred_k, t+1)}$$

$$pred_{MI}(e_{t+1}) = \sum_{k=1}^{n} weight(pred_k, t+1) \cdot pred_k(e_{t+1})$$

## Application to the Problem of Induction

Main result of the meta-inductive research programme: long-run optimality; In the long run  $pred_{MI}$ 's performs at least as good as any other method, if loss is convex:

$$\mathit{lim}_{t \to \infty} \mathit{success}(\mathit{pred}_{\mathit{MI}}, t) - \mathit{success}(\mathit{pred}_i, t) \geq 0, \;\; \mathsf{for \; all} \; 1 \leq i \leq n$$

By this success-based induction is justified (*per comparationem*).

Hence, given the past success of inductive methods as, e.g., the so-called *straight rule*, a success-based choice of these methods is also justified.

Provisos: garbage in  $\Rightarrow$  garbage out,  $pred_{MI}$  is "parasitical", optimality of  $pred_{MI}$  holds only for the long run and only for real-valued predictions, the number of object-methods has to be finite, etc.

## General Schema

- Meta-induction selects according to past success rates. (by definition)
- It is an optimal selection strategy. (analytical result)
- Induction was most successful in past.
- Hence, an optimal strategy selects induction also for future predictions. (from 1–3)

(empirical fact)

#### Inference to the Best Explanation and its Justification

### Inference to the Best Explanation: IBE

Inference to the Best Explanation (cf., e.g., Lipton 2004):

Given  $H_1, \ldots, H_n$  separately explain E, then choose best  $H_i$ .

Two conditions for *best explanation*:

- Maximise the data's plausibility in the light of the inferred laws:  $Pr(explanandum E \mid H explanans)$
- Maximise simplicity = minimise complexity: c(H explanans)

The complexity of a model H, i.e. c(H), is typically identified with its degree.

### The Epistemic Justification of IBE

As framed here, IBE has two main ingredients: Pr and c.

*Pr* is an epistemic notion, but is also *c*?

It can be shown that minimising c is in some sense truth-apt.

This is done, e.g., in the curve-fitting literature with information measures. Take as proxy the *Akaike information criterion* (cf. Forster and Sober 1994):

$$AIC(E, H) \propto \log(Pr(E|H)) - c(H)$$
 (AIC)

Then IBE can be specified to:

$$H_i$$
 can be inferred from  $E$  by abduction iff  
for all  $j \in \{1, ..., N\}, j \neq i$ : (AIC-IBE)  
 $AIC(E, H_i) > AIC(E, H_j)$ 

Rationale: *E* contains errors  $\Rightarrow \downarrow c \Rightarrow \downarrow$  chances of overfitting

# The Optimality of IBE

IBexplanation is by definition optimal.

This was the reason why IBE is justified.

Furthermore, since all ingredients (Pr, c) are truth-apt, it is epistemically justified.

So much for the inference to the best explanation.

But how about an inference to the best prediction?

### Inference to the Best Prediction and its Justification

#### The Problem

We have outlined that meta-induction provides a justification for induction.

Note that meta-induction might be considered as some form of inference to the best prediction. (E.g., induction was best and meta-induction infers its predictions.)

However, *best* is characterised only via the *loss*, e.g. in the sense of the absolute difference between prediction and outcome.

We are after *best* predictions in terms of *Pr*, *c*.

So, the problem consists in transforming the meta-inductive justification to one for IBE w.r.t. predictions.

#### The Problem

Assume that loss(E, H) is the squared distance:  $(E - H)^2$ .

Then, given some common assumptions, it holds (cf. Sober 2008, p.84):

$$loss(E, H) = 1 - Pr(E|H)$$

So, meta-induction can be considered as optimising with respect to the Pr-ingredient of IBE only.

However, given the possibility of error in the data E, we are also interested in the *c*-ingredient of IBE.

#### Meta-Abduction

We can rationalise the importance of c by assuming that possibly:

 $E_k \neq$  true event value at round k

... recall,  $E_k$  entered the MI-recipe via  $loss(pred_i(e_k), E_k)$ .

Then we can shift the task from predicting  $E_k$  to predicting the best balance between Pr and c w.r.t.  $E_k$ .

We do so by normalising AIC:

$$NAIC(E, pred_i) = \frac{AIC(E, pred_i) - (\log(\epsilon) - r)}{-\log(\epsilon)}$$

r ... highest polynomial we are going to consider

 $\epsilon$  . . . all values and predictions will be  $>\epsilon>0$ 

 $\Rightarrow$  Meta-induction applied to *NAIC* = Meta-abduction.

Justification of IB prediction via meta-abduction's optimality.

#### Summary

- We differentiated two forms of IBE:
  - Inference to the best explanation
  - Inference to the best prediction
- Both forms have as main ingredients *Pr* and *c*.
- IB*explanation* is justified by definition (optimality) and the truthaptness of its ingredients.
- IB*prediction* can be justified by reframing the meta-inductive vindication of induction to a form of meta-abduction.

#### References I

Feldbacher-Escamilla, Christian J. (under revision). *Epistemic Engineering. Uncovering the Logic of Deceivability and Meta-Induction.* book manuscript.

- Forster, Malcolm R. and Sober, Elliott (1994). "How to Tell When Simpler, More Unified, or Less Ad Hoc Theories Will Provide More Accurate Predictions". In: *The British Journal for the Philosophy of Science* 45.1, pp. 1–35. DOI: 10.1093/bjps/45.1.1.
- Lipton, Peter (2004). Inference to the Best Explanation. 2nd Edition. London: Routledge.
- Reichenbach, Hans (1938). Experience and Prediction. An Analysis of the Foundations and the Structure of Knowledge. Chicago: University of Chicago Press.
- Schurz, Gerhard (2008). "The Meta-Inductivist's Winning Strategy in the Prediction Game: A New Approach to Hume's Problem". In: *Philosophy of Science* 75.3, pp. 278–305. DOI: 10.1086/592550.
- (2019). Hume's Problem Solved. The Optimality of Meta-Induction. Cambridge, Massachusetts: The MIT Press.
- Sober, Elliott (2008). *Evidence and Evolution. The logic behind the science*. Cambridge: Cambridge University Press.